Windows 电脑部署 ollama3 并安装 llama3

部署中为了尽可能减少对本地环境的污染,使用 Docker 安装!

github: https://github.com/ollama/ollama

准备部署文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
version: '3.8'

services:
ollama:
volumes:
- ./models:/root/.ollama # 将本地文件夹挂载到容器中的 /root/.ollama 目录 (模型下载位置)
container_name: ollama
pull_policy: always
tty: true
restart: unless-stopped
image: ollama/ollama:latest
ports:
- 11434:11434 # Ollama API 端口

open-webui:
build:
context: .
args:
OLLAMA_BASE_URL: '/ollama'
dockerfile: Dockerfile
image: ghcr.io/open-webui/open-webui:main
container_name: open-webui
volumes:
- ./open-webui:/app/backend/data # 前端页面数据挂载位置
depends_on:
- ollama
ports:
- ${OPEN_WEBUI_PORT-3005}:8080
environment:
- 'OLLAMA_BASE_URL=http://ollama:11434'
- 'WEBUI_SECRET_KEY='
extra_hosts:
- host.docker.internal:host-gateway
restart: unless-stopped

之后使用 docker compose up -d 等待一段时间之后,docker images pull 成功。即可执行下一步。

下载 LLM 模型

LLM 模型参考:

Model Parameters Size Download
Llama 3 8B 4.7GB ollama run llama3
qwen 4b 2.3G ollama run qwen:4b
Llama 3 70B 40GB ollama run llama3:70b
Phi-3 3,8B 2.3GB ollama run phi3
Mistral 7B 4.1GB ollama run mistral
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

这里选择最小体积且最好用的模型: llama3:4b 模型,qwen:4b 模型质量很差。

1
ollama3 run llama3

成功之后会看到下面这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
root@c5e5ff20a533:/# ollama run llama3
pulling manifest
pulling 6a0746a1ec1a... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 12 KB
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 254 B
pulling 577073ffcc6c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 110 B
pulling 3f8eb4da87fa... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 485 B
verifying sha256 digest
writing manifest
removing any unused layers
success
>>> 你好
💖 你好!我很高兴地看到你的消息! 😊

>>> 你能介绍下自己吗
😊 I'd be happy to introduce myself.

My name is LLaMA, and I'm a large language model trained by Meta AI. I'm a computer program designed to understand and generate human-like text, so we can have
conversations like this one! 🤖

I was trained on a massive dataset of text from the internet, which allows me to learn about various topics, including history, science, culture, and more. This
training enables me to answer questions, provide information, and even engage in creative writing or storytelling.

As a conversational AI, my goal is to assist and entertain users like you. I'm designed to be helpful, friendly, and respectful, so please feel free to ask me
anything or share your thoughts with me! 💬

下载后的模型将被挂载到在 ./models 文件中。

访问

上面已经介绍了一种访问方式,通过 run 的方式。下面介绍通过 web ui 和 api 的方式访问。

API

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
curl http://localhost:11434/api/generate -d '{
"model":"llama3",
"prompt": "请分别翻译成中文、韩文、日文 -> Meta Llama 3: The most capable openly available LLM to date",
"stream": false
}'

curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"messages": [
{
"role": "user",
"content": "why is the sky blue?"
}
],
"stream": true
}'

Web ui

浏览器访问 localhost:3005即可。

image-20240718162933068


Windows 电脑部署 ollama3 并安装 llama3
http://yuluo-yx.github.io/2024/07/18/windows-安装-ollama3/
作者
yuluo
发布于
2024年7月18日
许可协议